
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Recursion

 Topics:
◦ Method call stack and activation records
◦ Base case
◦ Recursive case
◦ Describe some recursive mathematical
functions

◦ Recursion and the method call stack
◦ Print a list using recursion
◦ Print a list in reverse using recursion
◦ Insert into a sorted list using recursion
◦ Describe when to use recursion

© 2021 Arthur Hoskey. All
rights reserved.

How Recursion Works

Activation Record (Stack Frame)

A record used at run time to store information about a

function call, including the parameters, local variables,

return address, and function return value (if a value-

returning function)

Run-time Stack

A data structure that keeps track of activation records

during the execution of a program

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack

 Variables and parameters are not just stored
anywhere on the stack.

 Variables and parameters from the same function
are grouped together on the call stack.

void doSomething(int x) {

 String s;

 int z;

 // other code here…

}

Activation Record
DoSomething – int x; Parameter
 string s; Local var.
 int z; Local var.

Activation Record

 Here is an activation record

that would get created when

doSomething is called.

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack

 All variables declared in a function are stored in an
activation record (or stack frame).

 The activation record for a function call stores all the
variables and parameters declared in that function.

 Activation Record Behavior

◦ Method call → Push new activation record on stack

◦ Method ends → Pop top activation record off stack

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;Top

of call

stack

Execution is

currently here

(main just

started)

CALL main – Push activation record on

stack for main

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;

Execution

here

(Add just

started)

add – int num1; int num2;

CALL ADD – Push activation record on

stack for Add

Push on the

stack

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;

Top

of call

stack

Execution

here

(Add just

started)

add – int num1; int num2;

Add’s activation record is now

the top of the stack!!!

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Execution

here

(Add just

ended)

Call Stack

main – int x; int y; int sum;Top

of call

stack

ADD ENDED - Add’s activation

record was popped off the stack!

Add – int num1; int num2;

Pop off

stack

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;

Execution

here

(show just

started)

show – int z;

CALL SHOW– Push activation record on

stack for Show

Push on the

stack
Top

of call

stack

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;
Top

of call

stack

show – int z;

SHOW ENDED – Show’s activation

record was popped off the stack!

Execution

here

(show just

ended)

Pop off

stack

© 2021 Arthur Hoskey. All
rights reserved.

Method Call Stack Behavior

static int add(int num1, num2) {

 return num1 + num2;

}

static void show(int z) {

 System.out.println(z);

}

static void main(…) {

 int x, y, sum;

 x = 10;

 y = 20;

 sum = add(x, y);

 show(sum);

}

Call Stack

main – int x; int y; int sum;
Top

of call

stack

MAIN ENDED – main’s activation record

was popped off the stack! Program done.

Pop off

stack

© 2021 Arthur Hoskey. All
rights reserved.

Recursion

Video

 Recursion (Mario)

https://www.youtube.com/watch?v=fBJHeZgGQQ4

© 2021 Arthur Hoskey. All
rights reserved.

https://www.youtube.com/watch?v=fBJHeZgGQQ4

Recursion Goals

• Do the following tasks, given a recursive
routine

• Determine whether the routine halts

• Determine the base case(s)

• Determine the general case(s)

• Determine what the routine does

• Determine whether the routine is correct
and, if it is not, correct it

© 2021 Arthur Hoskey. All
rights reserved.

Recursion Goals

• Do the following tasks, given a simple
recursive problem

• Determine the base case(s)

• Determine the general case(s)

• Design and code the solution as a recursive
void or value-returning function

• Decide whether a recursive solution is
appropriate for a problem

© 2021 Arthur Hoskey. All
rights reserved.

What Is Recursion?

How is recursion like a set of Russian dolls?

© 2021 Arthur Hoskey. All
rights reserved.

What Is Recursion?

Recursive call
A method call in which the method being
called is the same as the one making the
call
Direct recursion
Recursion in which a method directly calls
itself
Indirect recursion
Recursion in which a chain of two or more
method calls returns to the method that
originated the chain

© 2021 Arthur Hoskey. All
rights reserved.

Example of Recursion

Recursive definition

A definition in which something is defined in terms

of a smaller version of itself

What is 3 factorial?

© 2021 Arthur Hoskey. All
rights reserved.

Example of Recursion
© 2021 Arthur Hoskey. All
rights reserved.

Examples of Recursion
© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Factorial

Mathematical Description of Factorial

n! = 1, if n = 0

 n* (n-1)!, if n > 0

© 2021 Arthur Hoskey. All
rights reserved.

Example of Recursion

Base case
The case for which the solution can be
stated nonrecursively
General (recursive) case
The case for which the solution is
expressed in terms of a smaller version
of itself
Recursive algorithm
A solution that is expressed in terms of
(a) a smaller instance(s) of itself and (b)
a base case(s)

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions

Algorithm for writing recursive solutions

Determine the size of the problem

Size is the factor that is getting smaller

Size is usually a parameter to the problem

Identify the base case(s)

The case(s) for which you know the answer

Identify the general case(s)

The case(s) that can be expressed as a

smaller version of the size

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Power

Let’s try it

Problem: Calculate Xn (X to the nth power)

Recursive formulation: X*(X)*(Xn)*...*X (x n times)

What is the size of the problem?

Which case do you know the answer to?

Which case can you express as a smaller

version of the size?

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Power

Mathematical Description of Power

Xn = 1, if n = 0 (Base)

 X * Xn-1, if n > 0 (Recursive)

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Power

int power(int number, int exponent)

{

 // Is it the base case?

 if (exponent == 0)

 {

 // Base case

 return 1;

 }

 else

 {

 // Recursive case – Call on smaller case

 return number * power(number, exponent - 1);

 }

}

Problem is a smaller

version of itself.

© 2021 Arthur Hoskey. All
rights reserved.

Sample Execution - Power

int power(int number, int exponent)

{

 // Is it the base case?

 if (exponent == 0)

 {

 // Base case

 return 1;

 }

 else

 {

 // Recursive case – Call on smaller version of itself

 return number * power(number, exponent - 1);

 }

}

Calculate 23

power(2, 3); returns 2 * 4
Recursive

Call

power(2, 2); returns 2 * 2
Recursive

Call

power(2,1); returns 2 * 1
Recursive

Call

power(2,0); returns 1

Base case

© 2021 Arthur Hoskey. All
rights reserved.

Sample Execution - Power

static void main(…) {

 int result = power(2,3);

 System.out.println(result);

}

© 2021 Arthur Hoskey. All
rights reserved.

Call Stack

main()

Top

of call stack

when base

case

reached power(2,3)

power(2,2)

power(2,1)

power(2,0) – Base case reached

Writing Recursive Solutions -
Power

• What would happen if we left out the base case?

int power(int number, int exponent)

{

 // Recursive case – Call on smaller case

 return number * power(number, exponent - 1);

}

No base case in

this method

© 2021 Arthur Hoskey. All
rights reserved.

Sample Execution – No base case

int power(int number, int exponent) {

 return number * power(number, exponent - 1);

}

© 2021 Arthur Hoskey. All
rights reserved.

Call Stack

main()

Stack Overflow!!!

METHOD CALLS

NEVER STOP!!!

power(2,3)

power(2,2)

power(2,1)

power(2,0)

power(2,-1)

power(2,-2)

Will eventually

run out of

stack memory

…

Writing Recursive Solutions

Pattern of solution

 if (some condition for which answer is known)

 solution statement

 else

 function call on smaller version of itself

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Fibonacci

Shall we try it again?

Problem: Calculate Nth item in Fibonacci

sequence

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

What is the next number?

What is the size of the problem?

Which case do you know the answer to?

Which case can you express as a smaller

version of the size?

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Fibonacci

Mathematical Description of Fibonacci

Sequence

Fn = 0, if n = 0

 1, if n = 1

 Fn-1 + Fn-2, if n >= 2

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions -
Fibonacci

int fibonacci(int n)

{

 if (n == 0 || n == 1)

 return n;

 else

 return fibonacci(n-2) + fibonacci(n-1);

}

That was easy, but it is not very efficient.

Why?

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions

Shall we try it again?

Problem: Search a list of integers for a value and

return true if it is in the list and false otherwise.

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Search – Array

 Recursively search an array for an item.

 Assume the following list:

© 2021 Arthur Hoskey. All
rights reserved.

Array

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 564422

10

Recursive Search – Array

boolean valueInArray(int value, int startIndex);

Which case do you know the answer to?

Which case can you express as a smaller version of the size?

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Search – Array

int[] info = new int[10]; // Member variable

boolean valueInArray(int value, int startIndex) {

 if (startIndex == info.length)

 return false; // Reached end of list

 else if (info[startIndex] == value)

 return true; // Found it

 else

 return valueInArray(value, startIndex + 1);

}

Base Case 1

Base Case 2

Recursive Case

Problem is a smaller version of

itself. Call valueInArray but this

time starting from the NEXT index

in the list.

Note

The array is a member

variable and valueInArray

has access to it.

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Search – Array

int[] info = new int[10]; // Member variable

boolean valueInArray(int value) {

 vallueInArray(value, 0); // Start recursion

}

boolean valueInArray(int value, int startIndex) {

 if (startIndex == info.length)

 return false; // Reached end of list

 else if (info[startIndex] == value)

 return true; // Found it

 else return valueInArray(value, startIndex + 1);

}

Public function. User of

class would actually call

this one.

Private function. User

does NOT call because it

contains an

implementation detail.

The implementation

detail is that an array is

used. The user would

have to supply the

starting index.

© 2021 Arthur Hoskey. All
rights reserved.

Writing Recursive Solutions

Why use recursion?

True, these examples could more easily be solved

using iteration

However, a recursive solution is a natural solution

in certain cases, especially when pointers are

involved

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

Printing a list in order recursively

Size?

Base case?

Recursive (general) case?

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

void print(Node listPtr)

{

 if (listPtr != null)

 {

 System.out.prinln(listPtr.data);

 print(listPtr.next);

 }

}

Where is the base case?

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

void print(Node listPtr)

{

 if (listPtr != null)

 {

 System.out.println(listPtr.data);

 print(listPtr.next);

 }

}

Where is the base case?

ANSWER: When listPtr is null

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

// This version will call the recursive version

void print() {

 print(listData);

}

// Recursive version will call itself

void print(Node listPtr)

{

 if (listPtr != null)

 { // Prints BEFORE recursive call

 System.out.println(listPtr.data);

 print(listPtr.next);

 }

}

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

UnsortedList ul;

ul.print(); // Call the helper to start

© 2021 Arthur Hoskey. All
rights reserved.

Unsorted List

length

data: 11

next:

listData

3

data: 50

next:

data: 83

next:

Recursive Print – List (linked)

ul.print(); // Calls recursive version with start of list

ul.print(listData); // First call to recursive version

© 2021 Arthur Hoskey. All
rights reserved.

Unsorted List

length

data: 11

next:

listData

3

data: 50

next:

data: 83

next:

listPtr After

ul.print(listData)

is called

11 is printed before recursive call

Recursive Print – List (linked)

ul.print(listData);// Calls recursive version again

ul.print(listPtr.next);

© 2021 Arthur Hoskey. All
rights reserved.

length

data: 11

next:

listData

3

data: 50

next:

data: 83

next:

listPtr After ul.print(listPtr.next) is

called

50 is printed before recursive call

Recursive Print – List (linked)

ul.print(listPtr.next);

© 2021 Arthur Hoskey. All
rights reserved.

length

data: 11

next:

listData

3

data: 50

next:

data: 83

next:

listPtrAfter ul.print(listPtr.next) is

called

83 is printed before recursive call

Recursive Print – List (linked)

ul.print(listPtr.next);

All the recursive calls are done. Now "unwind" since
base case has been reached (listPtr == null).

© 2021 Arthur Hoskey. All
rights reserved.

length

data: 11

next:

listData

3

data: 50

next:

data: 83

next:

listPtrAfter ul.print(listPtr.next) is

called

Nothing is printed. Base case reached.

Recursive Print – List (linked)

 Call stack when base case is reached

© 2021 Arthur Hoskey. All
rights reserved.

Call Stack

print() – 11, 50, 83

print(listData) – 11, 50, 83

print(listData.next) – 50, 83

print(listData.next.next) – 83

Top

of stack

print(listData.next.next.next) –

Recursive Print – List (linked)

Printing a list in reverse order

What must be changed from the in-order print to make the code

print in reverse order?

© 2021 Arthur Hoskey. All
rights reserved.

Recursive Print – List (linked)

// This version will call the recursive version

void revPrint()

{

 revPrint(listData);

}

// Recursive version will call itself

void revPrint(Node listPtr)

{

 if (listPtr != null)

 { // Prints AFTER recursive call

 print(listPtr.next);

 System.out.println(listPtr.data);

 }

}
Prints during

the "unwind"

© 2021 Arthur Hoskey. All
rights reserved.

boolean mystery(int[] info, int item, int fromLoc, int toLoc)
{
 int mid;
 if (fromLoc > toLoc)
 return false;
 else
 {
 mid = (fromLoc + toLoc) / 2 ;
 if (info[mid] == item)
 return true ;
 else
 if (item < info[mid])
 return mystery(info, item, fromLoc, mid-1);
 else
 return mystery(info, item, mid + 1, toLoc) ;
 }
}

What does this function return?

© 2021 Arthur Hoskey. All
rights reserved.

boolean binarySearch(int[] info, int item, int fromLoc, int toLoc)
{
 int mid;
 if (fromLoc > toLoc)
 return false;
 else
 {
 mid = (fromLoc + toLoc) / 2 ;
 if (info[mid] == item)
 return true ;
 else
 if (item < info[mid])
 return binarySearch(info, item, fromLoc, mid-1);
 else
 return binarySearch(info, item, mid + 1, toLoc) ;
 }
}

What does this function return?

ANSWER: true if found false otherwise

© 2021 Arthur Hoskey. All
rights reserved.

Removing Recursion

Tail Recursion

The case in which a function contains only a single

recursive invocation and it is the last statement to be

executed in the function.

A tail recursive function can be replaced with iteration.

Stacking

Using a stack to keep track of each local environment,

i.e., simulate the run-time stack .

© 2021 Arthur Hoskey. All
rights reserved.

When To Use Recursion
Depth of recursive calls is relatively “shallow”
compared to the size of the problem

Recursive version does about the same amount
of work as the nonrecursive version (same Big-
O)

The recursive version is shorter and simpler
than the nonrecursive solution

SHALLOW DEPTH EFFICIENCY CLARITY

© 2021 Arthur Hoskey. All
rights reserved.

Recursion Real-time Speed

The recursive version is generally slower
than an equivalent iterative version.

The reason the recursive version is slower is
that it generally requires more method
calls.

Executing method calls is more time consuming
than executing normal statements.

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: How Recursion Works
	Slide 4: Method Call Stack
	Slide 5: Method Call Stack
	Slide 6: Method Call Stack Behavior
	Slide 7: Method Call Stack Behavior
	Slide 8: Method Call Stack Behavior
	Slide 9: Method Call Stack Behavior
	Slide 10: Method Call Stack Behavior
	Slide 11: Method Call Stack Behavior
	Slide 12: Method Call Stack Behavior
	Slide 13: Recursion
	Slide 14: Recursion Goals
	Slide 15: Recursion Goals
	Slide 16: What Is Recursion?
	Slide 17: What Is Recursion?
	Slide 18: Example of Recursion
	Slide 19: Example of Recursion
	Slide 20: Examples of Recursion
	Slide 21: Writing Recursive Solutions - Factorial
	Slide 22: Example of Recursion
	Slide 23: Writing Recursive Solutions
	Slide 24: Writing Recursive Solutions - Power
	Slide 25: Writing Recursive Solutions - Power
	Slide 26: Writing Recursive Solutions - Power
	Slide 27: Sample Execution - Power
	Slide 28: Sample Execution - Power
	Slide 29: Writing Recursive Solutions - Power
	Slide 30: Sample Execution – No base case
	Slide 31: Writing Recursive Solutions
	Slide 32: Writing Recursive Solutions - Fibonacci
	Slide 33: Writing Recursive Solutions - Fibonacci
	Slide 34: Writing Recursive Solutions - Fibonacci
	Slide 35: Writing Recursive Solutions
	Slide 36: Recursive Search – Array
	Slide 37: Recursive Search – Array
	Slide 38: Recursive Search – Array
	Slide 39: Recursive Search – Array
	Slide 40: Writing Recursive Solutions
	Slide 41: Recursive Print – List (linked)
	Slide 42: Recursive Print – List (linked)
	Slide 43: Recursive Print – List (linked)
	Slide 44: Recursive Print – List (linked)
	Slide 45: Recursive Print – List (linked)
	Slide 46: Recursive Print – List (linked)
	Slide 47: Recursive Print – List (linked)
	Slide 48: Recursive Print – List (linked)
	Slide 49: Recursive Print – List (linked)
	Slide 50: Recursive Print – List (linked)
	Slide 51: Recursive Print – List (linked)
	Slide 52: Recursive Print – List (linked)
	Slide 53
	Slide 54
	Slide 55: Removing Recursion
	Slide 56: When To Use Recursion
	Slide 57: Recursion Real-time Speed
	Slide 58: End of Slides

